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Abstract: Typical optical coherence tomographic angiography (OCTA) acquisition areas on
commercial devices are 3×3- or 6×6-mm. Compared to 3×3-mm angiograms with proper
sampling density, 6×6-mm angiograms have significantly lower scan quality, with reduced
signal-to-noise ratio and worse shadow artifacts due to undersampling. Here, we propose a
deep-learning-based high-resolution angiogram reconstruction network (HARNet) to generate
enhanced 6×6-mm superficial vascular complex (SVC) angiograms. The network was trained
on data from 3×3-mm and 6×6-mm angiograms from the same eyes. The reconstructed 6×6-
mm angiograms have significantly lower noise intensity, stronger contrast and better vascular
connectivity than the original images. The algorithm did not generate false flow signal at the
noise level presented by the original angiograms. The image enhancement produced by our
algorithm may improve biomarker measurements and qualitative clinical assessment of 6×6-mm
OCTA.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomographic angiography (OCTA) is a non-invasive imaging technology that
can capture retinal and choroidal microvasculature in vivo [1]. Clinicians are rapidly adopting
OCTA for evaluation of various diseases, including diabetic retinopathy (DR) [2,3], age-related
macular degeneration (AMD) [4,5], glaucoma [6,7], and retinal vessel occlusion (RVO) [8,9].
High-resolution and large-field-of-view OCTA improve clinical observations, provide useful
biomarkers and enhance the understanding of retinal and choroidal microvascular circulations
[10–13]. Many enhancement techniques have been applied to improve the OCTA image quality,
including a regression-based algorithm bulk motion subtraction in OCTA [14], multiple en
face image averaging [15,16], enhancement of morphological and vascular features using a
modified Bayesian residual transform [17], and quality improvement with elliptical directional
filtering [18]. These approaches can improve vessel continuity and suppress the background
noise on angiograms with proper sampling density (i.e., sampling density that meets the Nyquist
criterion). However, while commercial systems offer a range of fields of view, only 3×3-mm
angiograms are adequately sampled for capillary resolution as the OCTA system scanning speed
limits the number of A-lines included on each cross-sectional B-scan. Conventional image
enhancement techniques like those mentioned above are not effective on the under-sampled
6×6-mm angiograms. This is unfortunate since the larger scans, with reduced resolution, are in
more need of enhancement. The difficulty in enlarging the field without sacrificing resolution
is a significant issue for development of OCTA technology, as its field of view is significantly
smaller than modalities such as fluorescein angiography (FA).

Recently, deep learning has achieved dramatic breakthroughs, and researchers have proposed a
number of convolutional neural networks (CNN) for OCTA image processing [19–26]. As an
important branch of image processing, super-resolution image reconstruction and enhancement
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also benefited from deep-learning-based methods [27–31]. Here, we propose a high-resolution
angiogram reconstruction network (HARNet) to reconstruct high-resolution angiograms of the
superficial vascular complex (SVC). We evaluated the reconstructed high-resolution OCTA for
noise level in the foveal avascular zone (FAZ), contrast, vascular connectivity, and false flow
signal. We also demonstrate that HARNet is capable of improving not just under-sampled
6×6-mm, but 3×3-mm angiograms as well.

2. Methods

2.1. Data acquisition

The 6×6- and 3×3-mm OCTA scans of the macula used in this study were acquired with
304×304 A-lines using a 70-kHz commercial OCTA system (RTVue-XR; Optovue, Inc.). Two
repeated B-scans were taken at each of the 304 raster positions and each B-scan consisted of
304 A-lines. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was
used to generate the OCTA data [32]. The reflectance values on structural OCT and flow values
on OCTA were normalized and converted to unitless values in the range of [0 255]. A guided
bidirectional graph search algorithm was employed to segment retinal layer boundaries [33]
[Figs. 1(A1), 1(B1)]. 3×3- and 6×6-mm angiograms of the SVC [Figs. 1(A2), 1(B2)] were
generated by maximum projection of the OCTA signal in a slab including the nerve fiber layer
(NFL) and ganglion cell layer (GCL).

Fig. 1. Data acquisition for HARNet. (A1) Cross-sectional structural OCT of a 3×3-mm
scan volume, with overlaid boundaries showing the top (red) and bottom (green) of the SVC
slab. (A2) 3×3-mm angiogram of the superficial vascular complex (SVC) generated by
maximum projection of the OCTA signal in the slab delineated in (A1). The yellow line
shows the location of the B-scan in (A1). (B1) and (B2) Equivalent images for 6×6-mm
angiograms from the same eye capture more peripheral features, but are of lower quality.

2.2. Network architecture

Our network structure is composed of a low-level feature extraction layer, high-level feature
extraction layers, and a residual layer (Fig. 2). Input to the network consists of SVC angiograms.
The network first extracts shallow features from the input image through one convolutional layer
with 128 channels. Then the high-level features are extracted through four convolutional blocks.
Each convolutional block is composed of 20 convolutional layers (C1-C20) with 64 channels.
The kernel size in all the convolutional layers is 3×3 pixels. Skip connections concatenate the
output and input of each convolutional block as the input to the next convolutional block. The
output and input of the last convolutional block are concatenated and then fed to the residual
layer. The residual layer contains a channel that produces the residual image. The residual image
and input image are summed to produce the final reconstructed output image. For the most
part, low-resolution and high-resolution images have the same low-frequency information, so
the output consists of the original input and the residual high-frequency components predicted
by HARNet. By only learning these high-frequency components, we were able to improve the



Research Article Vol. 11, No. 7 / 1 July 2020 / Biomedical Optics Express 3587

convergence rate of HARNet [27]. After each convolutional layer, excluding the residual layer,
we added a rectified linear unit (ReLU) [34] to accelerate the convergence of HARNet.

Fig. 2. Algorithm flowchart. The network is comprised of three parts: a low-level feature
extraction layer, high-level feature extraction layers, and a residual layer. The kernel size in
all the convolutional layers is 3×3. The number of channels in the green, blue, and yellow
convolutional layer are 128, 64, and 1, respectively. Red layers are concatenation layers that
concatenate the output of the convolution block with its input via skip connections. (A)
Example input and (B) output 6×6-mm angiogram.

2.3. Training

2.3.1. Training data preprocessing

We trained HARNet by reconstructing 6×6-mm angiograms from their densely-sampled 3×3-mm
equivalents. To do so, we first used bi-cubic interpolation to scale the size of the 6×6-mm SVC
angiograms [Fig. 3(A)] by a factor of 2, so that they would be on the same scale as a 3×3-mm
scan. Then we used intensity-based automatic image registration [35] [Fig. 3(D)] to register
the scaled 6×6-mm angiograms [Fig. 3(B)] with the 3×3-mm angiograms [Fig. 3(C)]. The
registration algorithm can produce a transform matrix, which contains translation, rotation, and
scaling operations. Finally, we cropped the overlapping region from each by taking the maximum
inscribed rectangle to construct the input for HARNet and the ground truth [Figs. 3(E) and 3(F)].

Fig. 3. Data preprocessing flow chart. (A) The original 6×6-mm superficial vascular
complex (SVC) angiogram. (B) Up-sampled 6×6-mm SVC angiogram. (C) Original
3×3-mm SVC angiogram. (D) Registered image combining both angiograms. The yellow
box is the largest inscribed rectangle. (E) Cropped central 3×3-mm section from the 6×6-mm
angiogram. (F) Cropped original 3×3-mm angiogram.
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2.3.2. Loss function

We trained the network on a ground truth composed of the original 3×3-mm angiograms filtered
with a bilateral filter. To minimize the difference between the output of network and the ground
truth, the loss function used in the learning stage was a linear combination of the mean square
error [MSE; Eq. (1)] and the structural similarity [SSIM; Eq. (2)] index [36,37]. MSE is used
to measure the pixel-wised difference, and SSIM is based on three comparison measurements:
reflectance amplitude, contrast, and structure:

MSE =
1

w × h

∑w

i=1

∑h

j=1
(X(i, j) − Y(i, j))2 (1)

SSIM =
2µXµY + C1

µ2X + µ
2
Y + C1

·
2σXY + C2

σ2
X + σ

2
Y + C2

(2)

Loss = MSE + (1 − SSIM) (3)

where w, h refer to the width and height of the image, X and Y refer to the output of HARNet
and the ground truth, respectively, and µX and µY are their mean pixel values, σX and σY are
their standard deviations, and σXY is the covariance. The values of the constants C1 = 0.01
and C2 = 0.03 were taken from the literature [37]. The loss function [Eq. (3)] was a linear
combination of the MSE and the SSIM.

2.3.3. Subjects and training parameters

The data set used in this study consisted of 298 eyes scanned from 196 participants. Each
eye was scanned with both a 3×3-mm and a 6×6-mm scan pattern. Ten healthy eyes from 10
participants were intentionally defocused and used in defocusing experiments. Of the remaining
288, we used 210 of these paired scans (randomly selected) for training, and reserved the rest
for testing (N=78). The training data includes eyes with DR (N=195) and healthy eyes (N=15).
The performance of this network on testing data was separately evaluated on eyes with diabetic
retinopathy (N=53) and healthy controls (N=25). Finally, false-flow generation experiments also
used 10 cases from the test set of healthy eyes. We used several data augmentation methods to
expand the training dataset, including horizontal flipping, vertical flipping, transposition, and
90-degree rotation. For training, considering the hardware capability and computation cost, we
used 38×38-pixel sub-images. To avoid the gradient exploding problem, we normalized the pixel
value range to 0-1 using Eq. (4),

S′(i, j) =
S(i, j) −min(S)

max(S) −min(S)
(4)

where S(i, j) is the pixel value ranging from 0-255 at position (i, j) of the angiogram, S′(i, j) is
the normalized pixel value at location (i, j), and min(·) and max(·) are minimum and maximum
pixel value of overall image, respectively. Thus the 1050-images in the training dataset after
augmentation can be decomposed into 176,405 sub-images, which are extracted from cropped
SVC angiograms with a stride of 19. Since HARNet is a fully convolutional neural network, it
can be applied on images of arbitrary sizes. Thus, we input the entire image to the model for
testing, as the entire image is the clinically relevant data.
An Adam optimizer [38] with an initial learning rate of 0.01 was used to train HARNet by

minimizing the loss. We used a global learning rate decay strategy to reduce the learning rate
during training in which the learning rate was reduced by 90% when the loss showed no decline
after 3 epochs, provided the rate was greater than 1 × 10−6. Training ceased when loss didn’t
change by more than 1 × 10−5 in 5 epochs. The training batch size was 128.

We implemented HARNet in Python 3.6 with Keras (Tensorflow-backend) on a PC with a 16G
RAM and Intel i7 CPU, and two NVIDIA GeForce GTX1080Ti graphics cards.
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3. Results

To validate the performance of our algorithm, we used a test dataset that composed of 78
paired original 3×3- and 6×6-mm angiograms and evaluated the reconstructed 3×3-mm and
6×6-mm angiograms using three metrics: noise intensity in the FAZ, global contrast, and
vascular connectivity. In addition, we also performed experiments on defocused SVC angiograms,
angiograms with different simulated noise intensities, and DR angiograms.

3.1. Evaluation metrics

3.1.1. Noise intensity

In healthy eyes, the FAZ is avascular, so to obtain an estimate of noise intensity INoise, we consider
the pixel values in 0.3-mm diameter circle R centered in the FAZ

INoise =
1
R
×
∑
(i,j)∈R

S(i, j)2 (5)

where S(i, j) is the pixel value at position (i, j).

3.1.2. Image contrast

The global contrast of the SVC angiograms produced by the network was measured by the
root-mean-square (RMS) contrast [39],

CRMS =

√
1
A
×
∑
(i,j)∈A

(S(i, j) − µ)2 (6)

where S(i, j) is the pixel value at position (i, j), A is the total area of the SVC angiogram and µ is
its mean value.

3.1.3. Vascular connectivity

Wealso assessed vascular connectivity. To do so, wefirst binarized the angiograms [Figs. 4(A2)–4(D2)]
using a global adaptive threshold method [40], then skeletonized the binary map to get the
vessel skeleton map [Figs. 4(A3)–4(D3)]. Connected flow pixels were defined as any contiguous
flow region with at a length of at least 5 (including diagonal connections), and the vascular
connectivity was defined as the ratio of the number of connected flow pixels to the total number
of pixels on the skeleton map [32].

3.2. Performance on defocused angiograms

In order to further verify that our algorithm can improve the image quality of low-quality scans,
we also evaluated its performance on defocused angiograms. To obtain defocused scans, we first
performed autofocus to optimize the focal length to get optimal scans, and then manually adjusted
the focal length to obtain angiograms defocused by 3 diopters. Finally, 10 defocused 3×3-mm
angiograms and 10 defocused 6×6-mm angiograms were obtained. Defocused angiograms have
lower signal-to-noise ratios than correctly focused angiograms, and vessels also appear dilated.
The results show that angiograms reconstructed from defocused 3×3- and 6×6-mm angiograms
had lower noise intensity and better connectivity than scans acquired under optimal focusing
conditions (Fig. 5; Table 1). Therefore, our algorithm is also applicable to defocused angiograms
and improves the quality of such scans. Since defocus leads to a general reduction in scan quality,
this result also implies that our algorithm could be applicable on low-quality scans.
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Fig. 4. The performance of HARNet. Row 1: (A1) Original 3×3-mm superficial vascular
complex (SVC) angiogram and (B1) HARNet output from (A1). (C1) Original 6×6-mm
angiogram, and (D1) HARNet output from (C1). Row 2: adaptive threshold binarization of
the corresponding images in row 1. Row 3: skeletonization of the corresponding images in
row 2. HARNet outputs show enhanced connectivity relative to the original images.

Table 1. Noise intensity, contrast and vascular connectivity (mean±std.) of reconstructed
defocused SVC angiograms, and angiograms captured under optimal conditions.

Noise intensity Contrast Connectivity

3×3-mm (N= 10)
SVC angiograms with
optimal focuses

80.89± 79.87 54.70± 1.29 0.83± 0.04

Reconstructed SVC on
defocused angiograms

1.12± 0.56 56.33± 2.23 0.91± 0.02

Optimal vs. Reconstructed P<0.001 (Mann-Whitney U
testa)

P=0.216 (t-test) P<0.001 (t-test)

6×6-mm (N= 10)
SVC angiograms with
optimal focuses

139.71± 86.90 56.64± 2.00 0.78± 0.02

Reconstructed SVC on
defocused angiograms

1.28± 3.50 56.00± 2.17 0.95± 0.01

Optimal vs. Reconstructed P<0.001 (Mann-Whitney U
testa)

P=0.856 (t-test) P<0.001 (t-test)

aThe Shapiro-Wilk test was used to check for normality of all variables. Mann-Whitney U test was used for noise intensity
that deviates statistically significantly from a normal distribution. N is the number of eyes.

3.3. Assessment of the false flow signal

One concern in OCTA reconstruction is the generation of false flow signal. Because OCTA
reconstruction methods are designed to enhance vascular detail, they are susceptible to mistakenly
enhancing background that may randomly share some features with true vessels. In order to
evaluate whether HARNet produces such artifacts, we selected 10 3×3-mm angiograms with
good quality from 10 healthy eyes and then produced denoised angiograms by applying a simple
Gabor and median filter to the original 3×3-mm angiograms [(Fig. 6(A1)]. Then we added
Gaussian noise to the denoised angiograms using different parameters (µ,σ) [Figs. 6(B1)–6(E1)].
We varied µ and σ separately in increments of 0.005 from 0.001 to 0.1 and from 0.001 to 0.05,
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Fig. 5. Qualitative demonstration of image quality improvement by the proposed recon-
struction method. (A1) 3 diopter defocused 3×3-mm superficial vascular complex (SVC)
angiogram. (B1) Reconstruction of (A1). (C1) 3×3-mm OCTA acquired under optimal
conditions. (A2) 3 diopter defocused 6×6-mm SVC angiogram. (B2) Reconstruction of
(A2). (C2) 6×6-mm angiogram acquired under optimal conditions. (A3) Central 3×3-mm
section from the defocused 6×6-mm SVC angiogram. (B3) Reconstruction of (A3). (C3)
Central 3×3-mm section from the 6×6-mm angiogram acquired under optimal focusing
conditions. The green box is the central 3×3-mm section in the 6×6-mm SVC angiograms.

respectively, to obtain 2000 noisy 3×3-mm SVC angiograms with different noise intensities (0 -
2100). Next, we input the denoised and noisy angiograms into the network to obtain reconstructed
angiograms from each [Figs. 6(A2)–6(E2)]. The false flow signal intensity was defined as

IFlase flow signal =
1
R
×
∑
(i,j)∈R

S(i, j)2 (7)

where IFalse flow signal is the false flow signal intensity, S(i, j) is the pixel value at position (i, j),
and R corresponds to the same, physiologically flow-free 0.3-mm diameter circle within the
FAZ as previously. We found our algorithm did not generate false flow signal when the noise
intensity was under 500, which is far above the noise intensity measured in original 3×3-mm
(146.77± 145.87) and 6×6-mm (93.10± 159.05) angiograms (Fig. 7).

3.4. Performance on DR angiograms

Many diseases present outside of the central area of the macula. The enhancement of larger
field-of-view angiograms resolution and image quality may improve the measurements of
disease biomarkers such as non-perfusion area and vessel density, thereby further helping
ophthalmologists diagnose such diseases. However, since features in diseased eyes may vary
from healthy, it is possible that image reconstruction algorithms could suffer from reduced
performance on such images. To investigate, we examined reconstructed 6×6-mm angiograms
(Fig. 8) of eyes with DR, a leading cause of blindness [41]. Although the 6×6-mm angiograms
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Fig. 6. 3×3-mm superficial vascular complex (SVC) angiograms with different noise
intensities. (A1) In 3×3-mm angiograms denoised with Gabor and median filtering, the
noise intensity is 0. (B1-E1) 3×3-mm SVC angiograms with different noise intensities.
(A2-E2) 3×3-mm angiograms reconstructed from the corresponding angiograms in row 1.
When the noise intensity is less than 500, there is no false flow signal.

Fig. 7. (A) The relationship between noise intensity and false flow signal intensity. Each
point represents one of 2000 noise enhanced scans. The red line indicates the measured
cutoff-value (INoise = 500) for producing false flow signal. (B) Box plots of the noise intensity
of 3×3- and 6×6-mm superficial vascular complex (SVC), non-defocused angiograms in
the data set (N=298). The noise intensity measured in original 3×3-mm and 6×6-mm
angiograms are far below the cutoff-value for false flow generation, with the exception of
outlier images corrupted by apex reflection or true flow signals in the 0.3mm diameter circle
centered in the FAZ.

of eyes with DR have higher noise intensity than healthy eyes, results show that the reconstructed
DR angiograms also demonstrate the improvement on noise intensity, contrast, and connectivity
comparable to that of healthy controls (Table 2). Because abnormal morphological vessels play a
very important role in the diagnosis, it is essential to retain the abnormal vascular morphology
when processing images. The DR angiograms reconstructed by our algorithm can preserve
pathological vascular abnormalities such as intraretinal microvascular abnormalities (IRMA),
early neovascularization and microaneurysms [Fig. 8(A2)].
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Fig. 8. HARNet performance on eyes with DR. Top row: original 6×6-mm superficial
vascular complex (SVC) angiograms from an eye with active proliferative diabetic retinopathy
(PDR) (A1), mild non-proliferative diabetic retinopathy (NPDR) (B1), diabetics without
retinopathy (C1), and a healthy control (D1). Bottom row: 6×6-mm angiograms (A2-
D2) HARNet output for (A1-D1). A microaneurysm (a green arrow) and intraretinal
microvascular abnormalities (IRMA) (blue arrows) appear same in the reconstructed and
original angiograms, demonstrating that HARNet preserves the vascular pathologies.

Table 2. Noise intensity, contrast, and vascular connectivity (mean±std.) of reconstructed
6×6-mm SVC angiograms in eyes with diabetic retinopathy and healthy controls.

Noise intensity Contrast Connectivity

Healthy controls (N= 25)
Original 50.77± 59.39 55.61± 1.23 0.80± 0.02

Reconstructed 0.16± 0.26 59.61± 1.71 0.96± 0.01

Improvement 99.69% 7.20% 19.51%

Diabetic retinopathy (N= 53)
Original 109.63± 106.34 55.44± 2.65 0.80± 0.02

Reconstructed 9.76± 26.76 58.11± 2.68 0.97± 0.01

Improvement 91.10% 8.57% 21.06%

3.5. Performance of different methods

We also compared our algorithm with commonly used image enhancement methods including
Gabor and Frangi filters. Compared to the original angiograms, our method significantly reduces
noise and improves the vascular connectivity without producing false flow signal on all sizes of
scans. There is no significant improvement of image contrast on 3× 3-mm scans [(Fig. 9(D1)],
while, the contrast shows significant improvement on 6× 6-mm scans [Fig. 9(D2); Table 3]. The
Gabor filter reduces the noise intensity and improves vascular connectivity, but the contrast is
greatly reduced [Figs. 9(B1), 9(B2); Table 3]. The Frangi filter significantly enhances the contrast
and improves vascular connectivity, but the noise intensity is significantly increased and may
produce false flow signal [Figs. 9(C1), 9(C2); Table 3].
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Fig. 9. Performance of different methods on image enhancement. Top row: original 3×3-
mm superficial vascular complex (SVC) angiograms from a healthy eye; (A1) original data,
(B1) after applying a Gabor filter, (C1) after applying a Frangi filter, and (D1) reconstructed
using the proposed method. Bottom row: equivalent from a 6×6-mm scan.

Table 3. Comparison of noise intensity, contrast, and vascular connectivity (mean ± std.) between
original angiograms and angiograms processed by different methods. N is the number of eyes.

Noise intensity Contrast Connectivity

3×3-mm (N=78)

Original 163.87± 136.13 53.53± 2.31 0.83± 0.04

Gabor 108.15± 94.13a 44.97± 2.27 0.87± 0.03a

Frangi 260.92± 278.00 82.42± 4.37a 0.90± 0.03a

HARNet (proposed) 5.79± 7.83a 53.82± 3.05 0.93± 0.02a

6×6-mm (N=78)

Original 98.10± 113.12 54.19± 2.10 0.80± 0.02

Gabor 63.92± 83.35 44.39± 2.04 0.83± 0.02a

Frangi 167.17± 268.57 82.03± 2.96a 0.88± 0.02a

HARNet (proposed) 8.22± 24.32a 58.59± 2.50a 0.96± 0.00a

aCompared to original images using paired t test, the validation metrics with significant improvement (P-value<0.001)
was annotated with.

4. Discussion

Image analysis of low-quality or under-sampled OCTA is challenging in several respects. Noise
affects the visibility of small blood vessels, especially capillaries, leading to artifactual vessel
fragmentation. Motion and shadow artifacts are common, and amplified by under-sampling.
OCTA quality, then, can have a significant impact on the judgment of ophthalmologists or
researchers. To help mitigate this concern, several noise reduction and image enhancement
procedures have been proposed. To reduce noise and enhance vascular connectivity, datasets
are sometimes obtained by acquiring multiple images of the same location over time, making it
possible to apply various averaging techniques [15,16,42,43]. However, the acquisition of larger
and larger amounts of data makes the total acquisition time longer, increasing the probability of
image artifacts caused by eye motions and introducing additional difficulty for clinical imaging.
Filtering is also often applied to OCTA images to improve image quality [18,44], but typical
problems in data filtering are reduced image resolution and the loss of capillary signal. Other
noise reduction strategies suffer similar issues. For instance, a regression-based algorithm [14]
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that can remove decorrelation noise due to bulk motion in OCTA has been reported. Although
image contrast was improved by this method, the drawback is worse vessel continuity, and it also
suffers the loss of capillaries with weak signal.
In this study, our proposed method can not only reduce noise and enhance connectivity, but

also improve the capability to resolve capillaries in large-field-of-view scans. The two most
common scan patterns used in research and the clinic are 3×3-mm and 6×6-mm [45,46]. While
the smaller 3×3-mm OCTA can obtain higher image quality due to the denser scanning pattern,
its small fields-of-view is a major limitation. Our algorithm’s ability to enhance 6×6-mm OCTA
is a step toward compensating for this limitation. We achieved this enhancement by training a
network to reconstruct images by learning features from the high-definition 3×3-mm images.
This means that we did not need to manually segment vasculature to generate the ground truth, or
generate high-definition scans by using a new scanning protocol in a prototype [19]. Therefore,
our approach is a practical method to enhance 6×6-mm images by using an acquired 3×3-mm
image, that could in principle also be extended to even larger fields-of-view with sparser sampling.
Such enhancement via intelligent software could prove to be a superior method for achieving
high-quality, large-field scans since hardware solutions (like, for example, increasing sampling
density or incorporating adaptive optics) quickly lead to prohibitive cost and imaging times.
Improving image quality and resolution may in turn promote better measurements of disease
biomarkers such as non-perfusion area and vessel density; by extending improved image quality
to a larger field-of-view we also increase the chance that we will detect pathology since disease
can manifest outside of the central macular region usually imaged with OCTA [13,47].

We investigated the quality of our algorithm’s output by evaluating reconstructed angiograms
with three metrics: noise intensity in the FAZ, global contrast, and vessel connectivity. The
6×6-mm angiograms obtained by our algorithm have almost no noise in the FAZ (0.16± 0.26) and
vascular connectivitywas likewise increased in theHARNet-processed images. In addition to these
quantitative improvements, we consider the HARNet output images to appear qualitatively cleaner
than the unprocessed input. We also performed experiments on defocused SVC angiograms, and
the results show that the algorithm can improve such scans, which is an indication of robustness
and broad utility. To demonstrate that the restored flow signal in the reconstructed angiograms
is real, we verified whether a false flow signal is generated by using angiograms with different
simulated noise intensities. The results show that our algorithm did not generate false flow
signal when the noise intensity was under 500. This value far exceeds the noise intensity in the
clinically-realistic OCTA angiograms examined in this study. Because the noise intensity in
the FAZ and inter-capillary space is similar, we also think that artifactual vessels should not be
generated outside of the FAZ.

HARNet improved the quality of both 3×3- and 6×6-mm OCTA angiograms according to the
metrics examined in this study. Specifically, HARNet enhanced the quality of under-sampled
6×6-mm OCTA, while other enhancement algorithms perform poorly on such scans [48,49].
And it is interesting that, while HARNet was trained to reconstruct high-resolution 6×6-mm
angiograms from sparsely sampled scans, the network also improved 3×3-mm images. In
particular, the angiograms reconstructed from defocused scans compared favorably to equivalent
images acquired at optimal focus for both scanning patterns. This implies that HARNet is
effective as a general OCTA image enhancement tool, outside of the specific context of 6×6-mm
angiogram reconstruction. Additionally, the image improvement provided by HARNet is more
than just cosmetic, as demonstrated by the improvement in vessel connectivity. Although beyond
the scope of this study, we speculate that other OCTA metrics (e.g., non-perfusion area or vessel
density) may also prove to be more accurately measured on HARNet-reconstructed images.
Deep-learning-based algorithms are “black boxes” compared to the conventional image

processing algorithms. Interpretability of deep-learning is an important field of research in
machine learning. Matthew et al. [50] tried to understand CNNs using a kernel visualization
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technique. More recently, researchers proposed many methods to explain how CNNs work
[51–53]. For a specific CNN, we can use kernel visualization techniques or heat maps to
understand what features the CNN used to make decisions [54]. For our future work, we
could use the same visualization techniques to understand why HARNet is very effective on
reconstructing angiograms, and employ an ablation study to get a deeper understanding of
the structure of HARNet. The biggest advantage of deep-learning-based methods is that they
have strong generalizability, which means CNNs can make a reliable prediction on unseen data.
Furthermore, the transfer-learning technique is used to transfer the knowledge learned from one
dataset to a new dataset using a small number of samples. OCTA data form different pathologies
of the retina share a similar feature space. Thus, with the innate strong generalizability and
transfer-learning technique, our HARNet should be able to handle OCTA data from different
pathologies of the retina (i.e., age-related-degeneration and glaucoma).

There are some limitations to this study. Since we trained HARNet by using optimally sampled,
centrally located 3×3-mm angiograms, features specific to the periphery, i.e., the grating-like
vascular structure of the radial peripapillary capillaries [Fig. 10(C1)], could not be learned during
training. HARNet therefore may introduce features that are physiologically specific to the central
macula into more peripheral regions [Figs. 10(B2), 10(C2)]. Likewise, HARNet may remove
features specific to peripheral regions, particularly if there are disease-specific features that are
more prevalent in the periphery compared to the macula, such as neovascularization elsewhere,
which tend to occur more along the major vessels, away from the central macula. Unfortunately,
due to the lack of a high-resolution ground truth for the region outside the central macula, we can
only speculate on this issue. HARNet also currently only works in only one vascular complex
(the superficial), but the intermediate and deep capillary plexuses, as well as the choriocapillaris,
are important in several diseases [55–60]. Reconstruction of these vascular layers would also be
beneficial; however, issues such as shadowing that present preferentially in low-density scanning
patterns are only exacerbated in these deeper layers. This makes image reconstruction in these
locations significantly more challenging. Finally, to completely characterize HARNet, it will also

Fig. 10. (A1) Original 6×6-mm superficial vascular complex (SVC) angiograms. (B1)
The centrally located 3×3-mm angiograms. (C1) The region outside the centrally located
3×3-mm angiograms. (A2-C2) HARNet output for (A1-C1). Since the ground truth used
in training did not include the specific vascular patterns present in the green square, the
reconstruction here may not be ideal (C2).
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be important to assess performance on pathological scans. While our data indicates that HARNet
can perform well on DR angiograms, there are of course many other diseases that could be
examined for a more thorough assessment. Furthermore, a complete investigation of HARNet’s
performance on these diseases would include the extraction of relevant biomarkers to determine
if they are more or less accurately measured on reconstructed images. Due to eye motion, OCTA
produces bright strip artifacts that are also passed to reconstructed angiograms (Fig. 11). However,
our algorithm did not make efforts to correct this disturbance, since commercial systems could
remove most motion artifacts by tracking at the scan acquisition level and such artifacts can also
be frequently removed by other software means [14,61].

Fig. 11. Top row: (A1-C1) Original 6×6-mm superficial vascular complex (SVC) an-
giograms with motion artifacts. Bottom row: (A2-C2) HARNet output for (A1-C1). Blue
arrows indicate the position of motion artifacts.

5. Conclusions

We proposed an end-to-end image reconstruction technique for high-resolution 6×6-mm SVC
angiograms based on high-resolution 3×3-mm angiograms. The high-resolution 6×6-mm
angiograms produced by our network had lower noise intensity and better vasculature connectivity
than original 6×6-mm SVC angiograms, and we found our algorithm did not generate false
flow signal at realistic noise intensities. The enhanced 6×6-mm angiograms may improve the
measurements of disease biomarkers such as non-perfusion area and vessel density.
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